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Natively unfolded proteins play key roles in normal and A UDVFIGLSK’ AKEGVVARA B KTK QGVARAN'® GITKEQULYV'®
pathological biochemical processedhis category of proteins e aran®® arGevreon s e saoaeon e o s
remains, however, beyond the reach of classical structural biology DNEAVE PSE" "BGYODYEPE A’
because of their inherent conformational heterogeneity. The overall B o]
properties of unfolded proteins are similar to the random coil state Y
and are rather insensitive to the details of the amino acid seqéence. o'

Spectroscopic measurements, however, suggest the presence of C &
sequence-specific residual secondary and even tertiary structure in £
unfolded states of proteirfs® NMR residual dipolar couplings c.*g
(RDCs) are particularly sensitive probes for the structure and o ol
dynamics of biomolecules. When confined in weakly aligning _ 5]
media, unfolded proteins display surprisingly variable RDCs as a E ;
function of position along the chain, possibly even encoding the 2]
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native topology?® This is in clear contrast to the bell-like smooth fosia
{3 ue

dlstrlbutIOh of RDCs that I.S expected for a random flight Caa'” Figure 1. (A) Amino acid sequence afS. Bulky amino acids (bulkiness
and was interpreted as alignment of extended or polyproline Il . 14) are marked in red. (B, C) Comparison of amino acid bulkiness (five
conformations. More recently, it was shown that RDCs in residue window average) (red) with one-bold—15N RDCs (black)
denatured proteins can be predicted from ensembles of unfoldedobserved inaS in (B) buffer and (C) wit 8 M urea. (D) Comparison of
structures that were generated by using a self-avoiding statistical‘"‘?ti”_0 "écijd b“'l:dnf_ss (r_edZ)DW“hsNt Ry, rates (Iblactl'()' % }/amei g"e?:; "
coil model, WhiCh was based on re§idue-speabﬁ¢ propensities 38,2?13 17)(; (r:1$s,eacnlggaﬁl)c()n-rezgﬁgr:ieu:gi]gléisgﬁIlsoenof%?lsklgz. Bulkiness
from loop regions of a folded protein databa%é' Here we show values are only shown for residues with experimental data.
that a much simpler model can also explain many aspects of the
profile of RDCs in unfolded proteins: Amino acid bulkiness, the influence of neighboring residues decays exponentially as the
ratio of the side chain volume to its length, predicts clearly distance from a given residue (persistence length of the chain
observable features reporting on the local conformational behavior 7).1¢ Note that this only affects bulkiness values for residues at the
of natively unfolded proteins, such as the 140-residue protein termini. The refined bulkiness profile closely matches the variation
o-synuclein ¢S). of RDCs observed iS as a function of position along the chain.
aS is the major component of abnormal proteinaceous aggregatedn regions in which large RDCs were observed, many residues with
in the brain of patients with Parkinson’s disease. In its monomeric bulky side chains are present (Figure 1). The regions with large
form, aS was classified as natively unfold&dUsing RDCs and RDCs are separated by residues that showed couplings close to
paramagnetic relaxation enhancement from specifically attachedzero. In these linker sequences, mainly amino acids with small side
paramagnetic nitroxide radicals, we showed that, despite its high chains such as glycine and alanine are foutfAAG3?, S"GGA®®,
flexibility, native aS adopts an ensemble of conformations that are GAGS¥, 1%6GAY. The largest deviations between the RDC
stabilized by long-range interactiotsln the study reported here,  pattern and the bulkiness profile were present in the N-terminus
aS was weakly aligned in-octylpenta(ethylene glycol)/octan®l. ~ and for residues 115119 and 125-129. Upon addition of urea,
RDCs were determined at P& in 20 mM TrisHCI, pH 7.5, 100 these deviations were removed (Figure 1C). Although the interaction
mM NacCl, and wih 8 M urea. between the N- and the C-terminus is expected to be mostly
Figure 1 compares RDCs observedoi§ with the amino acid electrostatic, the C-terminus forms hydrophobic interactions with
bulkinesst® Bulkiness values were averaged over a five residue the central part ofiS. Thus, the observed changes in RDCs suggest
window size, and values for prolines were increased by an empirical @ complex network of long-range interactions, giving rise to a more
scaling factor of 1.6. Larger flexibility at the ends of the polypeptide complex RDC baseline upon which local structure is super-
chain was taken into account by combining the bulkiness profile imposed:317
with a bell-shaped curve that is based on the assumption that the The minimum deviation between experimental RDCs and the
bulkiness pattern was obtained for a five to seven residue window
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- s Vi " similar way as is seen for RDCs, and the bulkiness profile closely

. oo A - matches the B pattern (Figure 1D). This indicates that the local

E ; . steric interactions between side chains and the backbone restrict

3 wosr Y R motions on the pico- to nanosecond and micro- to millisecond time

£ 1020 30 40 50 60 70 B0 50 100 110 120 130 140 scale, in agreement with relaxation time measurements previously
Residue reported for acid-unfolded apomyogloBithe largest deviation

Figure 2. Com_parison of amino acid bulkiness (five residue windo_w between the R and the bulkiness profile was observed in the
%i:agggggl‘g?fgﬁﬂi&?eﬂeggzgiﬁf g%&iig}zﬁgcigéf were Imd'Ctedvicinity of Ell? and 9120, suggesting that prp!ines also restrict
slower motions for which R rates are not sensitive.

Our results demonstrate that, although various types of intra-
molecular interactions, such as electrostatic and solvent interactions,
play important roles, simple considerations of the bulkiness of amino
acids predict a major component of diverse parameters dependent

that the Flory isolated-pair hypotheXiss not sufficient to explain
RDCs in natively unfoldedS. A window size of five to seven is
in agreement with other measuremé#it$and calculationd2°that

estimated the length scale over which spatial correlations decay in . . .
denatured proteins to range from six to nine residues. on the local conformation and dynamicsa® and other natively

In the flexible-meccano approach, peptide chains are built using unfolded proteins. ngiations from this rapdom coillbehavior, as
randomly selecte@/¢ pairs drawn from a database of amino acid ewdt_ancgd t_)y R.DCS n _the N- and C-terminal domairod, can
specific conformations present in loop regions of high-resolution provn_de |r_13|ght mto r§3|dual secondary structgre and Iong-range
X-ray structured® The alignment tensor is predicted for each trangleptlntgractlons in weakly structured prptelns. The local s.terlc
conformer on the basis of the three-dimensional shape using restrictions in the.unfqlded state can also bias the conformat!onal
PALESZ2! and associated RDCs are calculated for each NH vector search toward native-like elements and thereby reduce the Levinthal

with respect to this tensor. RDCs from each site are then averagedparaiox' led hank . d inf
over 50 000 conformers to ensure convergence. Figure 2 compares Acknowledgment. We thank C. Griesinger and T.M. Jovin for
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The similarity between these profiles provides a direct experi- Al3li§portll'ngcn orc]lml?ilgr; Va!tﬁ e.'d obm;?s_rlson? f S f 't .

mental proof for the dominating influence of steric interactions on » €gin &, an “tauwith residue bulkiness. fnfiuence of steric

L exclusion on RDCs predicted by flexible-meccano. This material is
the composition of the Ramachandran plot. RDCs are reproduced” . ) i

; . . o available free of charge via the Internet at http://pubs.acs.org.
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